Waste heat boilers may be horizontal or vertical shell boilers or water tube boilers. They would be designed to suit individual applications ranging through gases from furnaces, incinerators, gas turbines and diesel exhausts.
The prime requirement is that the waste gases must contain sufficient usable heat to produce steam or hot water at the condition required. Waste-heat boilers may be designed for either radiant or convective heat sources.
In some cases, problems may arise due to the source of waste heat, and due consideration must be taken of this, with examples being plastic content in waste being burned in incinerators, carry-over from some type of furnaces causing strongly bonded deposits and carbon from heavy oil fired engines.
Some may be dealt with by maintaining gas-exit temperatures at a predetermined level to prevent dew point being reached and others by soot blowing. Currently, there is a strong interest in small combined heat and power (CHP) stations, and these will normally incorporate a waste-heat boiler.
Many industrial processes generate large amounts of waste energy that simply pass out of plant stacks and into the atmosphere or are otherwise lost. Most industrial waste heat streams are liquid, gaseous, or a combination of the two and have temperatures from slightly above ambient to over 2000 degrees F. Stack exhaust losses are inherent in all fuel-fired processes and increase with the exhaust temperature and the amount of excess air the exhaust contains. At stack gas temperatures greater than 1000 degrees F, the heat going up the stack is likely to be the single biggest loss in the process. Above 1800 degrees F, stack losses will consume at least half of the total fuel input to the process. Yet, the energy that is recovered from waste heat streams could displace part or all of the energy input needs for a unit operation within a plant. Therefore, waste heat recovery offers a great opportunity to productively use this energy, reducing overall plant energy consumption and greenhouse gas emissions.
Waste heat recovery methods used with industrial process heating operations intercept the waste gases before they leave the process, extract some of the heat they contain, and recycle that heat back to the process.
Common methods of recovering heat include direct heat recovery to the process, regenerators, and waste heat boilers. Unfortunately, the economic benefits of waste heat recovery do not justify the cost of these systems in every application. For example, heat recovery from lower temperature waste streams (e.g., hot water or low-temperature flue gas) is thermodynamically limited. Equipment fouling, occurring during the handling of “dirty” waste streams, is another barrier to more widespread use of heat recovery systems. Innovative, affordable waste heat recovery methods that are ultra-efficient, are applicable to low-temperature streams, or are suitable for use with corrosive or “dirty” wastes could expand the number of viable applications of waste heat recovery, as well as improve the performance of existing applications.